Exercise 9.2.6

Find the general solution to the PDE

$$
x \frac{\partial \psi}{\partial x}-y \frac{\partial \psi}{\partial y}=0 .
$$

Hint. The solution to Exercise 9.2.5 may provide a suggestion as to how to proceed.

Solution

Divide both sides by x.

$$
\begin{equation*}
\frac{\partial \psi}{\partial x}-\frac{y}{x} \frac{\partial \psi}{\partial y}=0 \tag{1}
\end{equation*}
$$

Since ψ is a function of two variables $\psi=\psi(x, y)$, its differential is defined as

$$
d \psi=\frac{\partial \psi}{\partial x} d x+\frac{\partial \psi}{\partial y} d y
$$

Dividing both sides by $d x$, we obtain the relationship between the total derivative of ψ and the partial derivatives of ψ.

$$
\frac{d \psi}{d x}=\frac{\partial \psi}{\partial x}+\frac{d y}{d x} \frac{\partial \psi}{\partial y}
$$

In light of this, equation (1) reduces to the ODE,

$$
\begin{equation*}
\frac{d \psi}{d x}=0 \tag{2}
\end{equation*}
$$

along the characteristic curves in the $x y$-plane that satisfy

$$
\begin{equation*}
\frac{d y}{d x}=-\frac{y}{x}, \quad y(1, \xi)=\xi \tag{3}
\end{equation*}
$$

where ξ is a characteristic coordinate. Solve for $y(x, \xi)$ by separating variables.

$$
\frac{d y}{y}=-\frac{d x}{x}
$$

Integrate both sides.

$$
\ln |y|=-\ln |x|+\eta
$$

Exponentiate both sides.

$$
\begin{aligned}
|y| & =e^{-\ln |x|+\eta} \\
& =e^{\eta} e^{\ln |x|^{-1}} \\
& =e^{\eta}|x|^{-1}
\end{aligned}
$$

Introduce \pm on the right side to remove the absolute value sign around y.

$$
y(x, \eta)=\frac{ \pm e^{\eta}}{|x|}
$$

Let ξ be $\pm e^{\eta}$.

$$
y(x, \xi)=\frac{\xi}{|x|} \quad \rightarrow \quad \xi=|x| y
$$

Integrate both sides of equation (2) with respect to x.

$$
\psi(x, \xi)=f(\xi)
$$

f is an arbitrary function of the characteristic coordinate. Now eliminate ξ in favor of x and y.

$$
\psi(x, y)=f(|x| y)
$$

The absolute value sign can be dropped safely because f is arbitrary. Therefore,

$$
\psi(x, y)=f(x y)
$$

